MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in many fields. The following is a comprehensive overview of the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material comprising M, A, X elements on the periodic table, collectively called “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the key group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, three of the aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is a new form of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, composed of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A means the main-group elements, and X means the elements of C and N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials get them to have an array of applications in structural materials. For instance, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be used in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials also provide better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often used in energy materials. For example, K4(MP4)(P4) is one from the MAX materials with high ionic conductivity and electrochemical activity, which bring a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
What Exactly are MXene materials?
MXene materials certainly are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The surface of MXene materials can interact with more functional atoms and molecules, and a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually include the etching treatment of the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics could be realized.
Properties of MXene materials
MXene materials are a new type of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the cabability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are commonly used in energy storage and conversion. For instance, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials could also be used as catalysts in fuel cells to boost the activity and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. As an example, MXene materials can be used as gas sensors in environmental monitoring, which can realize high sensitivity and selectivity detection of gases. Additionally, MXene materials could also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with the continuous progress of technology and science and also the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will likely be further expanded and improved. These aspects can become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and techniques can be further explored to understand a much more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, there is however still room for additional optimization. Down the road, the composition, structure, surface treatment and other aspects of the fabric may be studied and improved thorough to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be commonly used in lots of fields, but there are still many potential application areas to get explored. In the future, they may be further expanded, including in artificial intelligence, biomedicine, environmental protection along with other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in lots of fields. Using the continuous progress of technology and science as well as the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.